Abstract

GABA(A) receptors (GABA(A)Rs) regulate the majority of fast inhibition in the mammalian brain and are the target for multiple drug types, including sleep aids, anti-anxiety medication, anesthetics, alcohol, and neurosteroids. A variety of subunits, including the highly distributed gamma2, allow for pharmacologic and kinetic differences in particular brain regions. The two common splice variants gamma2S (short) and gamma2L (long) show different patterns of regional distribution both in adult brain and during the course of development, but show few notable differences when incorporated into pentameric receptors. However, results presented here show that the gamma2S variant can strongly affect both GABA(A)R pharmacology and kinetics by acting as an external modulator of fully formed receptors. Mutation of one serine residue can confer gamma2S-like properties to gamma2L subunits, and addition of a modified gamma2 N-terminal polypeptide to the cell surface recapitulates the pharmacological effect. Thus, rather than incorporation of a separate accessory protein as with voltage-gated channels, this is an example of an ion channel using a common subunit for dual purposes. The modified receptor properties conferred by accessory gamma2S have implications for understanding GABA(A)R pharmacology, receptor kinetics, stoichiometry, GABAergic signaling in the brain during development, and altered function in disease states such as epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call