Abstract

Sex ratio theory usually predicts an equilibrium sex ratio and equal proportions of males and females in a population, including the progenitors of the reproductive cells of protozoans. This proposal was tested with three species of malarial parasites of lizards, Plasmodium mexicanum of the western fence lizard, and P. agamae and P. giganteum of the African rainbow lizard, using single samples from naturally infected lizards, repeated samples from free-ranging lizards (P. mexicanum only), and repeated samples from laboratory maintained animals. Macrogametocytes were usually more abundant than microgametocytes, and were slightly larger, revealing a typically greater investment of resources by the progenitors of female reproductive cells. However, the proportion of microgametocytes varied among the three species and among infections within each species of Plasmodium. The sex ratio of gametocytes often remained constant within infections followed over time even if the absolute number of gametocytes was changing. However, the equilibrium sex ratio of gametocytes varied among those infections that had an unchanging microgametocyte proportion. Thus, although an equilibrium sex ratio apparently occurs for most infections, there appears to be no characteristic proportion of microgametocytes for any of the species. Potential explanations for this conflict with theory are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.