Abstract

The set theory of arithmetic decomposition is a method of designing complex addition/subtraction circuits at any radix using strictly positional, sign-local number systems. The specification of an addition circuit is simply an equation that describes the inputs and the outputs as weighted digit sets. Design is done by applying a set of rewrite rules known as decomposition operators to the equation. The order in which and weight at which each operator is applied maps directly to a physical implementation, including both multiple-level logic and connectivity. The method is readily automated, and has been used to design some higher radix arithmetic circuits. It is possible to compute the cost of a given adder before the detailed design is complete.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.