Abstract

We are at the dawn of a significant transformation in the electric industry. Renewable generation and customer participation in grid operations and markets have been growing at tremendous rates in recent years and these trends are expected to continue. These trends are likely to be accompanied by both engineering and market integration challenges. Therefore, to incorporate these resources efficiently into the grid, it is important to deal with the inefficiencies in existing markets. The goal of this thesis is to contribute new insights towards improving the design of electricity markets. This thesis makes three main contributions. First, we provide insights into how the economic dispatch mechanism could be designed to account for price-anticipating participants. We study this problem in the context of a networked Cournot competition with a market maker and we give an algorithm to find improved market clearing designs. Our findings illustrate the potential inefficiencies in existing markets and provides a framework for improving the design of the markets. Second, we provide insights into the strategic interactions between generation flexibility and forward markets. Our key insight is an observation that spot market capacity constraints can significantly impact the efficiency and existence of equilibrium in forward markets, as they give producers incentives to strategically withhold offers from the markets. Third, we provide insights into how optimization decomposition theory can guide optimal design of the architecture of power systems control. In particular, we illustrate a context where decomposition theory enables us to jointly design market and control mechanisms to allocate resources efficiently across both the economic dispatch and frequency regulation timescales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.