Abstract

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic bladder inflammation characterized by the main symptoms of urinary frequency, urgency, and pelvic pain. The hypersensitivity of bladder afferent neurons is considered a significant pathophysiologic mechanism in IC/PBS. Serotonin (5-HT, 5-hydroxytryptamine) receptors are known to be involved in the regulation of the micturition reflex and hyperalgesia, but the effect of 5-HT receptors on cystitis remains unknown. In this study, a rat model of interstitial cystitis induced by intraperitoneal injection of cyclophosphamide (CYP) was used to investigate the role of 5-HT receptors on cystitis. The histology and urodynamics exhibited chronic cystitis and overactive bladder in CYP-treated rats. Notably, among 5-HT1A, 5-HT2A and 5-HT7 receptors, the expression of 5-HT2A receptor was significantly increased in bladder afferent neurons in CYP-treated rats. Intrathecal administration of the 5-HT2A receptor antagonist M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis rats. Neuronal calcium imaging of bladder afferent neurons revealed increased calcium influx induced by the 5-HT2A receptor agonist or capsaicin in cystitis rats, which could be inhibited by M100907. Moreover, RNA sequencing indicated that differentially expressed genes were enriched in inflammation-related pathways and cellular calcium homeostasis. These findings suggest that the 5-HT2A receptor is involved in the hypersensitivity of bladder afferent neurons in CYP-induced cystitis, and M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis by inhibiting neuronal hypersensitivity in the afferent pathways. The 5-HT2A receptor may be a potential therapeutic target for the treatment of IC/BPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.