Abstract

p130(cas) (Crk-associated substrate) is a docking protein that is involved in assembly of focal adhesions and concomitant cellular signaling. It plays a role in physiological regulation of cell adhesion, migration, survival, and proliferation, as well as in oncogenic transformation. The molecule consists of multiple protein-protein interaction motifs, including a serine-rich region that is positioned between Crk and Src-binding sites. This study reports the first structure of a functional domain of Cas. The solution structure of the serine-rich region has been determined by NMR spectroscopy, demonstrating that this is a stable domain that folds as a four-helix bundle, a protein-interaction motif. The serine-rich region bears strong structural similarity to four-helix bundles found in other adhesion components like focal adhesion kinase, alpha-catenin, or vinculin. Potential sites for phosphorylation and interaction with the 14-3-3 family of cellular regulators are identified in the domain and characterized by site-directed mutagenesis and binding assays. Mapping the degree of amino acid conservation onto the molecular surface reveals a patch of invariant residues near the C terminus of the bundle, which may represent a previously unidentified site for protein interaction.

Highlights

  • The atomic coordinates and structure factors have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ

  • Besides its involvement in physiological regulation of cell adhesion, migration, survival and proliferation, Cas plays a role in oncogenic transformation

  • P130cas was originally identified as the major phosphotyrosine-containing protein that associated with v-Src and v-Crk oncoproteins in transformed cells [8, 9]

Read more

Summary

Introduction

The atomic coordinates and structure factors (code 1Z23) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/). Members of the 14-3-3 family interact with Ͼ200 cellular proteins, and recognition is usually dependent on serine/threonine phosphorylation within specific peptide motifs in the binding partners.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.