Abstract

Ticks are notable vectors of diseases affecting both humans and animals, with Hyalomma anatolicum being of particular significance due to its wide distribution and capability to transmit a variety of pathogens, including Theileria annulata, and Crimean–Congo haemorrhagic fever (CCHF) virus. This study aimed to investigate the inhibitory effects of Hyalomma anatolicum salivary gland extract (HaSGE) and the identification of its key component on the complement system of the host's innate immune defense. We demonstrated that HaSGE exerts a dose-dependent inhibition on the complement activation in a host-specific manner. Mechanistic studies revealed that HaSGE interferes with blocking the deposition and cleavage of complement proteins C3 and C5, thus preventing the formation of the membrane attack complex (MAC). Further, we identified a serine protease inhibitor, HAMpin-1, from the HaSGE through proteomic analysis and characterized its structure, function, and interaction with complement proteins. HAMpin-1 exhibited potent inhibitory activity against chymotrypsin and cathepsin-G, and notably, it is the first serpin from ticks shown to inhibit the classical and lectin pathways of the complement system. The expression of HAMpin-1 was highest in the salivary glands, suggesting its crucial role in blood feeding and immune evasion. Our findings revealed one of the potential mechanisms employed by H. anatolicum to modulate host immune responses at the interface, offering new insights into tick-host interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.