Abstract

The beta-type functions play an important role in many applied sciences. The partial derivatives of the beta function and the incomplete beta function are integrals involving algebraic and logarithmic endpoint singularities. In this paper, some series expansions for these beta-type functions are found, which are easily used to evaluate these functions with prescribed precision. On the other hand, an accurate Gauss-Legendre quadrature formula is designed to compute these beta-type functions and their partial derivatives based on the Puiseux series for the integrands at their singularities. Some numerical examples confirm the high accuracy and high efficiency of the two algorithms, and also show that the algorithms can be used to effectively evaluate the generalized beta-type functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call