Abstract

Infectious diseases caused by Aeromonas hydrophila (AH) have reduced the populations of Rana dybowskii). However, little is known about the immune response of R. dybowskii against AH infections. The toll-like receptor (TLR) signaling pathway has been identified as a critical component in innate immunity, responsible for identifying pathogen-associated molecular patterns in pathogens. Our study used the next-generation sequencing technique and single-molecule long-read sequencing to determine the structures of transcript isoforms and functions of genes in the kidneys of R. dybowskii, as well as identify and validate the related genes in the TLR4 signaling pathway. In total, 628,774 reads of inserts were identified, including 300,053 full-length non-chimeric reads and 233,592 non-full-length reads. Among the transcriptome sequences, 124 genes were identified as homologs of known genes in the TLR4 pathway especially inflammatory cytokines and receptors. Our findings shed light on the structures and functions of R. dybowskii genes exposed to AH and confirm the presence of both MyD88-dependent and independent pathways in R. dybowskii. Our work reveals how various functional proteins in amphibians at the initial stage of immune response are activated and complete their corresponding functions in a short time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call