Abstract
The contrast asynchrony is a stimulus configuration that illustrates the visual system's separable responses to luminance and luminance contrast information (Shapiro, 2008; Shapiro et al., 2004). When two disks, whose luminances modulate in phase with each other, are each surrounded by a disk, one light and one dark, observers can see both the in-phase brightness signals and the antiphase contrast signals and can separate the two. Here we present the results of experiments in which observers viewed a similar stimulus dichoptically. We report that no asynchrony is perceived when one eye is presented with modulating disks and the other eye is presented with the black and white surround rings, nor is an asynchrony perceived in gradient versions of the contrast asynchrony. We also explore the "window shade illusion" (Shapiro, Charles, & Shear-Heyman, 2005) dichoptically and find that when a modulating disk is presented to one eye and a horizontally split black/white annulus is presented to the other, observers perceive a "shading" motion up and down the disk. This shading can be seen in either direction in the binocular condition, but it is almost always seen as moving towards low contrast in the monocular condition. These findings indicate the presence of separable retinal and cortical networks for contrast processing at different temporal and spatial scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.