Abstract

Diethylenetriamine pentamethylene phosphonic acid (DTPMP) is one of the most commonly used amino organic phosphonates. The existing methods for DTPMP detection are complicated, time-consuming, and cannot detect trace DTPMP in the natural environment. In the present work, the Fe-based 3,5-dimethyl pyrazole fluorescent sensor (Fe-DP) was constructed. The addition of Fe3+ to DP solution can greatly decrease the fluorescent intensity of DP, while the addition of different concentrations of DTPMP will restore the fluorescence intensity of DP to different degrees, to achieve quantitative detection of DTPMP, and the detection limit (LOD) of DTPMP was lower as 0.105 μΜ. The Fe-DP fluorescent sensor exhibited excellent anti-interference ability and good stability. Moreover, the fluorescence quenching mechanism of DP by Fe3+ was revealed by UV absorption spectrum and Multiwfn wavefunction analysis based on density function theory (DFT). The results revealed that the excitation of DP belonged to local excitation, in which the electrons were donated primarily by the N atom with double bond and redistributed within the pyrazole ring.The fluorescence quenching of adding Fe3+ was not caused by resonance energy transfer or charge transfer, which did not belong to dynamic quenching, but due to the ground state complex formed by the coordination of Fe3+ and the double bond N atom on the DP pyrazole ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call