Abstract

In this paper, we study the semiclassical approximation of multiple functional integrals. The integrals are defined through the Lagrangian and the action. Of all possible trajectories, the greatest contribution to the integral is given by the classical trajectory x̅cl for which the action S takes an extremal value. The classical trajectory is found as a solution of the multidimensional Euler – Lagrange equation. To calculate the functional integrals, the expansion of the action with respect to the classical trajectory is used, which can be interpreted as an expansion in powers of Planck’s constant. The numerical results for the semiclassical approximation of double functional integrals are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.