Abstract

AbstractThe averaged four-planetary motion theory is constructed up to the third order in planetary masses. The equations of motion in averaged elements are numerically integrated for the Solar system’s giant planets for different initial conditions. The comparison of obtained results with the direct numerical integration of Newtonian equations of motion shows an excellent agreement with them. It suggests that this motion theory is constructed correctly. So, we can use this theory to investigate the dynamical evolution of various extrasolar planetary systems with moderate orbital eccentricities and inclinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.