Abstract
Rapid drug delivery to the brain might increase the risk for developing addiction. In rats, increasing the speed of intravenous cocaine delivery (5 vs. 90s) increases drug intake and the subsequent motivation to self-administer cocaine. Increased motivation for cocaine could result not only from more extensive prior drug intake and operant responding for drug, but also from neuroplasticity evoked by rapid drug uptake. We determined the contributions of prior drug intake and operant responding to the increased motivation for cocaine evoked by rapid delivery. We also investigated the effects of cocaine delivery speed on corticostriatal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) mRNA. Rats self-administered cocaine (0.25mg/kg/infusion) delivered over 5 or 90s during short-access (1h/session; ShA) or long-access (6h; LgA) sessions. Motivation for cocaine was then assessed by measuring responding under a progressive ratio schedule of reinforcement. Next, BDNF and TrkB mRNA levels were measured in 5- and 90-s rats. Five-second ShA and 5-s-LgA rats were more motivated for cocaine than their 90-s counterparts. This effect was dissociable from previous levels of drug intake or of operant responding for cocaine. In parallel, only rats self-administering rapid cocaine injections had altered BDNF and TrkB mRNA levels in corticostriatal regions. Rapid drug delivery augments the motivation for cocaine independently of effects on the levels of drug intake or operant responding for drug. We suggest that rapid delivery might increase the motivation for drug by promoting neuroplasticity within reward pathways. This neuroplasticity could involve increased regulation of BDNF/TrkB.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have