Abstract
To substitute or to supplement diffusion barrier as reducing lateral dimension of interconnects, the alloying Mg and Ru to Cu was investigated as a self-formatting barrier in terms of their resistivity, adhesion, and barrier characteristics After annealing at 400 °C for 30 min, the resistivities of the Cu–0.7 at%Mg alloy and Cu–2.2 at%Ru alloy were 2.0 μΩ cm and 2.5 μΩ cm, respectively, which are comparable to that of Cu films. The adhesion was investigated by means of a sandwiched structure using the four point bending test. The interfacial debonding energy, which represents the adhesion, of Cu–Mg/SiO 2 was over 5.0 J/m 2 , while those of the Cu–Ru/SiO 2 and Cu/SiO 2 interfaces were 2.2 J/m 2 and 2.4 J/m 2 , respectively. The barrier characteristics of the alloy films were also investigated by the time-dependent dielectric breakdown test, using a metal–oxide–semiconductor structure, under bias-temperature stress. It was shown that the alloying of Mg made the lifetime seven times longer, as opposed to the alloying of Ru which made it shorter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have