Abstract
With the rapid development of society, more and more unknown halogenated disinfection byproducts (DBPs) enter into drinking water and pose potential risks to humans. To explore the unknown halogenated DBPs in tap water, a selectively nontargeted analysis (SNTA) method was developed by conducting micro-liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (micro-LC-QTOFMS). In this method, two runs were employed: in the first run, the modes of TOFMS and precursor ion (the fragments were set as Cl35/Cl37, Br79/Br81, and I126.9) were performed, and the molecular ions or precursor ions of the halogenated organics could be obtained; in the second run, the product ion mode was conducted by setting the molecular ion screened above, and the MS/MS spectrums could be acquired to speculate concerning the structure. Two kinds of model DBPs (one kind had an aliphatic structure and the other was an aromatic compound) were used to optimize the parameters of the MS, and their MS characteristics were summarized. With this SNTA method, 15 halogenated DBPs were screened in two tap water samples and their structures were proposed. Of them, six DBPs had not been reported before and were assumed to be new DBPs. Overall, the detected halogenated DBPs were mostly acidic substances.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have