Abstract
Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a “lentisk oil-bacteria” interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains (S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a “natural microbial modulating extract” in the prevention of biofilm- associated diseases.
Highlights
The current emergency of antibiotic resistance poses a serious problem for human health as regards the treatment of various bacterial infections
A set of bacteria/yeasts described in human tissues as pathogens, commensals, or probiotics was used: S. aureus ATCC 6538 (American Type Culture Collection), Staphylococcus hominis human clinical isolate NC5, Pseudomonas aeruginosa ATCC 27853, Bacillus clausii isolated from a commercial product, Enterogermina R (Senesi et al, 2001)
Native lentisk oil obtained from the berries (LBO) resulted active against two different strains: S. mitis and S. intermedius, while it appeared to be inactive against S. salivarius and other Streptococci
Summary
The current emergency of antibiotic resistance poses a serious problem for human health as regards the treatment of various bacterial infections. We studied the anti-microbial motif of an oil obtained from the fruit of an ethnobotanical plant that was first used 5,000 years ago by the Bronze Age Paleolithic communities of several Mediterranean and Middle Eastern countries (Bozorgi et al, 2013). The role of the present research is to focus on the pathogen’s response in the planktonic and sessile status at different concentrations of LBO and, at the same time, to investigate the composition of the oil prior to, and after, incubation with a set of representative pathogens using high performance liquid chromatography (HPLC) analysis, with the purpose of evaluating a possible interaction between lentisk oil components and bacterial metabolism
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have