Abstract

The seismic activity of the Norwegian and Greenland Seas and adjacent areas has been examined in view of the tectonic evolution of the North Atlantic. The 529 earthquakes used covered the period 1955–1972, and for fifteen of these events fault-plane solutions were available. An analysis was made of the location precision which turned out to be better than 20 km in most cases. Expectedly, little new evidence was obtained at the midoceanic ridges and major fracture zones, with possible exceptions of the Knipovich Ridge showing a well-defined seismicity belt supporting the idea of an active spreading ridge, and the Spitsbergen Fracture Zone, which seems to be a system of en-echelon faults. Most interesting is a weak linear event pattern in the Lofoten Basin, possibly giving evidence of unknown structures parallel to the Greenland and Senja Fracture Zones, although sediment loading also may be important. Earthquakes along the shelf edge off Norway are located at or near isostatic gravity belts which may act as hinge lines for the marginal subsidence, thus implying stress release caused by differential subsidence of the continental crust. Part of the seismicity of eastern Greenland and western Norway appears to be related to zones of weakness of pre-Cenozoic age. The seismic activity along the edges of the Norwegian Channel is very limited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call