Abstract

Secretin is a 27-amino acid gastrointestinal hormone that stimulates the secretion of bicarbonate-rich pancreatic fluid. We isolated and analyzed the coding region of the gene for the rat secretin precursor. The entire coding region spans 692 base pairs and is divided into four regions corresponding to the signal peptide and NH2-terminal peptide, the secretin peptide and processing signal sequences, a part of the COOH-terminal peptide, and the remainder of the COOH-terminal peptide, which are interrupted by three short introns (81, 105, and 104 base pairs). The organization is similar to those of the genes for other members of the secretin family, glucagon and VIP/PHI-27 precursors, supporting the assumption that the genes for the secretin family peptide precursors originated from a common ancestral gene. We also demonstrated that the secretin precursor gene is widely expressed in the brain and in the hypophysis. The regional expression pattern of the secretin precursor gene in the brain is quite different from those of the glucagon and VIP/PHI-27 precursor genes. The secretin precursor gene is highly expressed in the medulla oblongata and pons of the brain and the hypophysis, the expression levels of which are comparable to those in the duodenum. The secretin precursor mRNA in the brain and the hypophysis has the same coding sequence as that in the duodenum, indicating that secretin in the brain and the hypophysis is produced from the same secretin precursor protein as that in the duodenum. This is the first evidence to be reported that the secretin precursor gene is definitely expressed in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call