Abstract

BackgroundOver the past decade, many investigators have used sophisticated time series tools for the analysis of genomic sequences. Specifically, the correlation of the nucleotide chain has been studied by examining the properties of the power spectrum. The main limitation of the power spectrum is that it is restricted to stationary time series. However, it has been observed over the past decade that genomic sequences exhibit non-stationary statistical behavior. Standard statistical tests have been used to verify that the genomic sequences are indeed not stationary. More recent analysis of genomic data has relied on time-varying power spectral methods to capture the statistical characteristics of genomic sequences. Techniques such as the evolutionary spectrum and evolutionary periodogram have been successful in extracting the time-varying correlation structure. The main difficulty in using time-varying spectral methods is that they are extremely unstable. Large deviations in the correlation structure results from very minor perturbations in the genomic data and experimental procedure. A fundamental new approach is needed in order to provide a stable platform for the non-stationary statistical analysis of genomic sequences.ResultsIn this paper, we propose to model non-stationary genomic sequences by a time-dependent autoregressive moving average (TD-ARMA) process. The model is based on a classical ARMA process whose coefficients are allowed to vary with time. A series expansion of the time-varying coefficients is used to form a generalized Yule-Walker-type system of equations. A recursive least-squares algorithm is subsequently used to estimate the time-dependent coefficients of the model. The non-stationary parameters estimated are used as a basis for statistical inference and biophysical interpretation of genomic data. In particular, we rely on the TD-ARMA model of genomic sequences to investigate the statistical properties and differentiate between coding and non-coding regions in the nucleotide chain. Specifically, we define a quantitative measure of randomness to assess how far a process deviates from white noise. Our simulation results on various gene sequences show that both the coding and non-coding regions are non-random. However, coding sequences are "whiter" than non-coding sequences as attested by a higher index of randomness.ConclusionWe demonstrate that the proposed TD-ARMA model can be used to provide a stable time series tool for the analysis of non-stationary genomic sequences. The estimated time-varying coefficients are used to define an index of randomness, in order to assess the statistical correlations in coding and non-coding DNA sequences. It turns out that the statistical differences between coding and non-coding sequences are more subtle than previously thought using stationary analysis tools: Both coding and non-coding sequences exhibit statistical correlations, with the coding regions being "whiter" than the non-coding regions. These results corroborate the evolutionary periodogram analysis of genomic sequences and revoke the stationary analysis' conclusion that coding DNA behaves like random sequences.

Highlights

  • Over the past decade, many investigators have used sophisticated time series tools for the analysis of genomic sequences

  • We demonstrate that the proposed timedependent autoregressive moving average (TD-ARMA) model can be used to provide a stable time series tool for the analysis of non-stationary genomic sequences

  • The estimated timevarying coefficients are used to define an index of randomness, in order to assess the statistical correlations in coding and non-coding DNA sequences

Read more

Summary

Introduction

Many investigators have used sophisticated time series tools for the analysis of genomic sequences. The main limitation of the power spectrum is that it is restricted to stationary time series It has been observed over the past decade that genomic sequences exhibit non-stationary statistical behavior. More recent analysis of genomic data has relied on time-varying power spectral methods to capture the statistical characteristics of genomic sequences. Techniques such as the evolutionary spectrum and evolutionary periodogram have been successful in extracting the time-varying correlation structure. To understand the relationship between the DNA correlation structure and possible gene abberations, Dodin et al [8] designed a simple correlation function intended to visualize the regular patterns encountered in DNA sequences. This function is used to revisit the intriguing question of triplet repeats with the aim of providing a visual estimate of the propensity of genes to be highly expressed and/or to lead to possible aberrant structures formed upon strand slippage

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call