Abstract

In this paper, the application of properties of the second-order output spectrum (SOOS) for nonlinear fault localization in ring type structures is studied. A more general ring type multiple-degree-of-freedom model, which regards nonlinear faults (bolt loosening or fatigue crack) and inherent material or boundary nonlinearities as nonlinear restoring forces, is utilized to describe the nonlinear behavior of ring type structures. Through harmonic excitation analysis and a novel local tuning approach, properties of the SOOS of nonlinear ring type structures are analyzed and clearly demonstrated with examples. Based on these properties, a novel SOOS-based method with a local damage index is proposed for nonlinear fault localization. The effectiveness and feasibility of this novel method are validated with multiple bolt loosening fault localization on a satellite-like structure in experiments and are further illustrated through comparisons with several existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.