Abstract

In order to diagnose potential serious and initial damages (loose bolts or fatigue cracks) in industrial structures more precisely, a systematic second-order output spectrum (SOOS) based method with a local tuning approach (LTA) is proposed in this article. In the novel method, structures with faults, material nonlinearities and nonlinear boundary conditions are represented by the Volterra series, and then a general ring type multi-degree-of-freedom (MDOF) model simulating nonlinearities as nonlinear restoring forces is built to describe the structures’ behavior. With defined nonlinear fault features, two local damage indicators based on the SOOS and LTA are derived for diagnosing serious and initial faults in sequence. Results of experiments on a satellite-like structure with loose bolts show that the systematic SOOS based method can identify serious and initial bolt loosening faults more accurately. Thus, it can be more applicable for fault diagnosis in complex structures in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.