Abstract
The technique of second time derivative (STD) analysis is developed and applied to the chemiluminescence (CL) profiles of two polypropylene (PP) formulations and a 5% w/w blend of polybutadiene (PBD) in PP to assess this novel method of analysis as a means of reliably determining the oxidative induction time (OIT) of polymers. It is proposed that the STD technique, when used in conjunction with the integrated CL profile, can enable evaluations of the OIT to be made that are less subjective than those made using the conventional extrapolation method. This is particularly so in systems that exhibit a gradual onset towards autoacceleration and/or convoluted CL profiles. Chemiluminescence profiles of the PBD–PP blend that were obtained at different temperatures were subjected to STD analysis, and Arrhenius plots of the data were made. The results are consistent with the notion that the PBD and PP phases oxidize almost independently. The activation energies for the oxidation of the PBD and PP phases were calculated to be 200 ± 31 kJ mol−1 and 146 ± 9 kJ mol−1, respectively. The higher activation energy for the PBD phase is partly attributed to the greater partitioning of thermal stabilizer in this phase. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1986–1993, 2001
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.