Abstract
Multiple processing and thermo-oxidation have been employed to simulate the degradative processes to which high-impact polystyrene (HIPS) is subjected during processing, service life, and mechanical recycling. A curve-fitting procedure has been proposed for the analysis of the individual bands corresponding to polybutadiene microstructure resulting from Raman spectroscopy. The analysis of the glass transition relaxations associated with the polybutadiene (PB) and polystyrene (PS) phases has been performed according to the free-volume theory. Both reprocessing and thermo-oxidative degradation are responsible for complex physical and chemical effects on the microstructure and morphology of PB and polystyrene PS phases, which ultimately affect the macroscopic performance of HIPS. Multiple processing affects PB microstructure and the free-volume parameter associated with the PS phase. Physical ageing of the PS phase predominates for shorter exposure to thermo-oxidation; after prolonged exposure, however, the chemical effects on the PB phase become significant and strongly influence the overall structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.