Abstract
To examine the second-order coherence of light propagation of quantum states in arbitrary directions through dispersive non-Hermitian optical media, we considered two sets of non-Hermitian periodic structures that consist of gain/loss unit cells. We show that each batch can satisfy the parity-time symmetry conditions at a distinct frequency. We then varied the gain/loss strength in the stable electromagnetic regime to evaluate the transmittance of N-photon number states through each structure. The results show both sets preserve their antibunching characteristics under specific incident light conditions. Furthermore, s(p)-polarized light exhibits higher (lower) second-order coherence at larger incident angles. In addition, the antibunching features of the transmitted states degrade with an increase in the number of unit cells in multilayered structures for both polarizations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.