Abstract

Abstract The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere is examined using results from a 2-yr simulation of the extended version of the Canadian Middle Atmosphere Model (CMAM). The CMAM is shown to be able to reproduce not only the observed semiannual amplitude variation of the tide in the lower thermosphere but also more subtle features such as amplitude maxima that are stronger in March/April than in September/October, a 4- to 6-h shift in phase between winter and summer in the Northern Hemisphere, and a weaker seasonal variation of phase in the Southern Hemisphere. Part I of this two-part series of papers investigates the importance of two of the mechanisms that have been proposed to explain the observed variation of tidal amplitude, namely, 1) interactions with small-scale gravity waves and 2) interactions with planetary-scale waves like the quasi–2-day wave. Analysis of the tidal momentum and thermodynamic budgets shows that the direct effects of param...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call