Abstract

Climatological structure of the quasi-2-day wave (Q2DW) at middle latitudes in temperature and horizontal winds in the mesosphere and lower thermosphere (MLT) was compared between the northern and southern hemispheres. Determination of the Q2DW in temperature was based on observation data by the Microwave Limb Sounder (MLS) onboard NASA's Earth Observing System (EOS) Aura satellite over 17 years from August 2004 to May 2021 and the Q2DW in horizontal winds was derived from Aura/MLS geopotential height data using balance equations. Amplitudes were maximized in summer in the southern hemisphere and in the meridional wind in the northern hemisphere, but in winter in the zonal wind in the northern hemisphere. Summer amplitudes were larger in the meridional wind than the zonal wind in the southern hemisphere, but zonal amplitudes in winter were larger than meridional amplitudes in summer in the northern hemisphere. Westward propagating zonal wavenumber 3 (W3) was largest in both hemispheres, but in addition to well-known W4, W3, W2 and eastward propagating zonal wavenumber 2 (E2), we also found W1, zonally symmetric standing (S0), and E1. Eliassen-Palm fluxes were derived for each mode. W3, W2, W1, and E2 fluxes were exhibited upward and poleward in January in the southern hemisphere while only W3 fluxes were exhibited clearly upward and poleward in July in the northern hemisphere. The balance winds and radar winds agreed in both amplitude and phase in the southern hemisphere and at lower latitudes in the northern hemisphere in January, and at lower latitudes in both hemispheres in July. Furthermore, the Q2DW is modulation in amplitude and phase from the W3 by accumulating other modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call