Abstract

Chaperonin (Cpn)60 proteins have the ability to activate human and murine myeloid cells. There is contradictory evidence that the receptor for this protein is either similar to that of lipopolysaccharide—CD14 and one or other toll-like receptor (e.g. TLR4) or is some other, undidentified, receptor. In an attempt to directly identify the receptor for Mycobacterium tuberculosis Cpn60.1 we have used two approaches. The first is to use Cpn60.1 as an affinity ligand to pull out the receptor from lysates of the murine monocyte cell line RAW 264.7. The second is to crosslink Cpn60.1 to its receptor on RAW cells and isolate the complex by immunoprecipitation. These methods have worked for other receptors. Using affinity chromatography, 2D SDS–PAGE and peptide mass fingerprinting with MALDI-TOF MS it was found that a number of proteins had the ability to bind to Cpn60.1 on an affinity matrix. We identified five proteins, three of which were likely to be on the cell surface. One of these proteins, the endoplasmic reticulum molecular chaperone, BiP did bind to Cpn60.1 with low affinity. Protein crosslinking studies proved inadequate as insufficient protein could be isolated for mass spectrometric identification. Thus, it appears that Cpn60.1, like Hsp70, may bind to a number of cell surface proteins. BiP appears to be one of these receptor proteins but more work is needed to identify those responsible for signalling. Of interest, CD14 and TLR4 were not identified in this study as a receptor for Cpn60.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call