Abstract
AbstractThis paper conducts a survey of several small clusters of machines in search of the most energy-efficient data center building block targeting data-intensive computing. We first evaluate the performance and power of single machines from the embedded, mobile, desktop, and server spaces. From this group, we narrow our choices to three system types. We build five-node homogeneous clusters of each type and run Dryad, a distributed execution engine, with a collection of data-intensive workloads to measure the energy consumption per task on each cluster. For this collection of data-intensive workloads, our high-end mobile-class system was, on average, 80% more energy-efficient than a cluster with embedded processors and at least 300% more energy-efficient than a cluster with low-power server processors.KeywordsEnergy EfficiencyEmbed ProcessorServer ProcessorIntel AtomData Center ComputingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have