Abstract

Apoptotic cells (AC) must be cleared by macrophages (Mø) to resolve inflammation effectively. Mertk and scavenger receptor A (SR-A) are two of many receptors involved in AC clearance. As SR-A lacks enzymatic activity or evident intracellular signaling motifs, yet seems to signal in some cell types, we hypothesized that SR-A signals via Mer receptor tyrosine kinase (Mertk), which contains a multisubstrate docking site. We induced apoptosis in murine thymocytes by dexamethasone and used Western blotting and immunoprecipitation to analyze the interaction of Mertk and SR-A in the J774A.1 (J774) murine Mø cell line and in peritoneal Mø of wild-type mice and SR-A-/- mice. Phagocytosis (but not adhesion) of AC by J774 was inhibited by anti-SR-A or function-blocking SR-A ligands. In resting J774, SR-A was associated minimally with unphosphorylated (monomeric) Mertk; exposure to AC induced a time-dependent increase in association of SR-A with Mertk in a direct or indirect manner. Anti-SR-A inhibited AC-induced phosphorylation of Mertk and of phospholipase Cgamma2, essential steps in AC ingestion. Relative to tissue Mø of wild-type mice, AC-induced Mertk phosphorylation was reduced and delayed in tissue Mø of SR-A-/- mice, as was in vitro AC ingestion at early time-points. Thus, during AC uptake by murine Mø, SR-A is essential for optimal phosphorylation of Mertk and subsequent signaling required for AC ingestion. These data support the Mertk/SR-A complex as a potential target to manipulate AC clearance and hence, resolution of inflammation and infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call