Abstract

Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform betaII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent manner. How these molecules cooperate to induce phagocytosis is unknown. As the phosphatidylinositol-specific phospholipase (PI-PLC) gamma2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC gamma2. To test this hypothesis, we examined the interaction of MerTK and PLC gamma2 in resident, murine peritoneal (P)Mø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: tyrosine phosphorylation of MerTK; association of PLC gamma2 with MerTK; and tyrosine phosphorylation of PLC gamma2. Cross-linking MerTK using antibody also induced phosphorylation of PLC gamma2 and its association with MerTK. A PI-PLC appears to be required for phagocytosis of apoptotic cells, as the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC gamma2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call