Abstract

AbstractLOFAR, the Low Frequency Radio Array, is a new pan‐European radio telescope that is almost fully operational. One of its main drivers is to make deep images of the low frequency radio sky. To be able to do this a number of challenges need to be addressed. These include the high data rates, removal of radio frequency interference, calibration of the beams and correcting for the corrupting influence of the ionosphere. One of the key science goals is to study merger shocks, particle acceleration mechanisms and the structure of magnetic fields in nearby and distant merging clusters. Recent studies with the GMRT and WSRT radio telescopes of the “Sausage” and the “Toothbrush” clusters have given a very good demonstration of the power of radio observations to study merging clusters. Recently we discovered that both clusters contain relic and halo sources, large diffuse regions of radio emission not associated with individual galaxies. The 2 Mpc northern relic in the Sausage cluster displays highly aligned magnetic fields and and exhibits a strong spectral index gradient that is a consequence of cooling of the synchrotron emitting particles in the post‐shock region. We have argued that these observations provide strong evidence that shocks in merging clusters are capable of accelerating particles. For the Toothbrush cluster we observe a puzzling linear relic that extends over 2 Mpc. The proposed scenario is that a triplemerger can lead to such a structure. With LOFAR's sensitivity it will not only be possible to trace much weaker shocks, but also to study those shocks due to merging clusters up to redshifts of at least one. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.