Abstract

In this paper, we investigate the Cauchy problem of the Sasa–Satsuma (SS) equation with initial data belonging to the Schwartz space. The SS equation is one of the integrable higher-order extensions of the nonlinear Schrödinger equation and admits a 3 × 3 Lax representation. With the aid of the ∂¯ -nonlinear steepest descent method of the mixed ∂¯ -Riemann–Hilbert problem, we give the soliton resolution and long-time asymptotics for the Cauchy problem of the SS equation with the existence of second-order discrete spectra in the space-time solitonic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.