Abstract

Skeletal muscle exhibits strikingly regular intracellular sorting of actin and tropomodulin (Tmod) isoforms, which are essential for efficient muscle contraction. A recent study from our laboratory demonstrates that the skeletal muscle sarcoplasmic reticulum (SR) is associated with cytoplasmic γ-actin (γ(cyto)-actin) filaments, which are predominantly capped by Tmod3. When Tmod3 is experimentally induced to vacate its SR compartment, the cytoskeletal organization of SR-associated γ(cyto)-actin is perturbed, leading to SR swelling, depressed SR Ca(2+) release and myofibril misalignment. Based on these findings, Tmod3-capped γ(cyto)-actin filaments mechanically stabilize SR structure and regulate SR function via a novel lateral linkage. Furthermore, by placing these findings in the context of studies in nonmuscle cells, we conclude that Tmodcapped actin filaments are emerging as critical regulators of membrane stability and physiology in a broad assortment of cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.