Abstract

The calcium release channels (CRC)/ryanodine receptors of skeletal (Sk) and cardiac (C) muscle sarcoplasmic reticulum (SR) are hetero-oligomeric complexes with the structural formulas (ryanodine recepter (RyR)1 protomer)4(FKBP12)4 and (RyR2 protomer)4(FKBP12.6)4, respectively, where FKBP12 and FKBP12.6 are isoforms of the 12-kDa receptor for the immunosuppressant drug FK506. The sequence similarity between the RyR protomers and FKBP12 isoforms is 63 and 85%, respectively. Using 35S-labeled FKBP12 and 35S-labeled FKBP12.6 as probes to study the interaction with CRC, we find that: 1) analogous to its action in skeletal muscle sarcoplasmic reticulum (SkMSR), FK506 (or analog FK590) dissociates FKBP12.6 from CSR; 2) both FKBP isoforms bind to FKBP-stripped SkMSR and exchange with endogenously bound FKBP12 of SkMSR; and 3) by contrast, only FKBP12. 6 exchanges with endogenously bound FKBP12.6 or rebinds to FKBP-stripped CSR. This selective binding appears to explain why the cardiac CRC is isolated as a complex with FKBP12.6, whereas the skeletal muscle CRC is isolated as a complex with FKBP12, although only FKBP12 is detectable in the myoplasm of both muscle types. Also, in contrast to the activation of the channel by removal of FKBP from skeletal muscle, no activation is detected in CRC activity in FKBP-stripped CSR. This differential action of FKBP may reflect a fundamental difference in the modulation of excitation-contraction coupling in heart versus skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.