Abstract

We define the sample area in the plane perpendicular to the long axis of conventional and alternative time domain reflectometry (TDR) probes based on the finite element numerical analysis of Knight et al. [1997] and the definition of spatial sensitivity ofKnight [1992]. The sample area of conventional two‐ and three‐rod probes is controlled by the rod separation. Two‐rod probes have a much larger sample area than three‐rod designs. Low dielectric permittivity coatings on TDR rods greatly decrease the sample area. The sample area of coated rod probes decreases as the relative dielectric permittivity of the surrounding medium increases. Two alternative profiling probes were analyzed. The separation of the metal rods of Hook et al. [1992] probes controls the size of the sample area. Reducing the height or width of the rods improves the distribution of sensitivity within the sample area. The relative dielectric permittivity of the probe body does not affect the sample size. The sample size of the Redman and DeRyck [1994] probe is also controlled by the rod separation. Two alternative surface probe designs [White and Zegelin, 1992; Selker et al., 1993] are shown to have similar sample areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call