Abstract

Forty-eight digits from 12 human adult fresh-frozen and formalin-preserved cadaveric hands were used to study the anatomy and biomechanics of the sagittal band (SB) and to investigate the mechanism of its injury. The SB was observed to be part of a complex retinacular system in proximity to the metacarpophalangeal (MCP) joint collateral ligaments and the palmar plate. Dynamic changes in SB fiber orientation were observed with different positions of the MCP and wrist joints. The fibers were perpendicular (0 degrees ) to the extensor tendon in neutral position, distally angulated 25 degrees at 45 degrees of MCP flexion, and 55 degrees with full flexion. Swan-Ganz catheter measurements were obtained deep to the SB in varying positions of the MCP joint. The average pressure generation was greatest (50 mm Hg) during full MCP joint flexion and least (30 mm Hg) during 45 degrees flexion. When MCP joint radial or ulnar deviation was added the average measurement was greatest (57) in neutral MCP position and least (35 mm Hg) in 45 degrees flexion. Serial sectioning of the ulnar SB produced no extensor tendon instability. Partial proximal but not distal sectioning of the radial SB produced tendon subluxation. Complete sectioning of the radial SB produced tendon dislocation. Wrist flexion increased tendon instability after radial SB sectioning. We conclude that (1) extensor tendon instability following SB disruption is most common in the long finger and least common in the small finger; (2) ulnar instability of the extensor tendon is due to partial or complete radial SB disruption, (3) the degree of extensor tendon instability is determined by the extent of SB disruption, (4) proximal rather than distal SB compromise contributes to extensor tendon instability, (5) great forces are inflicted on the SB while the MCP joint is in full extension or less frequently in full flexion, which may be the mechanism of its injury, and (6) wrist flexion contributes to extensor tendon instability after SB disruption and may exacerbate the severity of its injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.