Abstract
We show that the partial sums of the power series for a certain class of entire functions possess scaling limits in various directions in the complex plane. In doing so, we obtain information about the zeros of the partial sums. We will only assume that these entire functions have a certain asymptotic behavior at infinity. With this information, we will partially verify for this class of functions a conjecture on the location of the zeros of their partial sums known as the Saff–Varga width conjecture. Numerical results and figures are included to illustrate the results obtained for several well-known functions including the Airy functions and the parabolic cylinder functions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have