Abstract
The effects of safe-end length and kinematic boundary conditions during welding on weld residual stresses in dissimilar metal welds are systematically investigated using finite element analyses for typical pressurized water reactor surge nozzle configurations. The study is generalized by idealizing complex nozzle geometries as straight pipes with two welds. The impact of these variables on axial residual stresses at inner surface is examined, since these are of most concern for primary water stress corrosion cracking. Possible mechanisms controlling the development of welding residual stresses are used to qualitatively explain the predicted behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.