Abstract
This paper studies the saddle point problem of polynomials. We give an algorithm for computing saddle points. It is based on solving Lasserre’s hierarchy of semidefinite relaxations. Under some genericity assumptions on defining polynomials, we show that: (i) if there exists a saddle point, our algorithm can get one by solving a finite hierarchy of Lasserre-type semidefinite relaxations; (ii) if there is no saddle point, our algorithm can detect its nonexistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.