Abstract

Mechanistic models in biology often involve numerous parameters about which we do not have direct experimental information. The traditional approach is to fit these parameters using extensive numerical simulations (e.g. by the Monte-Carlo method), and eventually revising the model if the predictions do not correspond to the actual measurements. In this work we propose a methodology for hybrid system model revision, when new types of functions are needed to capture time varying parameters. To this end, we formulate a hybrid optimal control problem with intermediate points as successive infinite-dimensional linear programs (LP) on occupation measures. Then, these infinite-dimensional LPs are solved using a hierarchy of semidefinite relaxations. The whole procedure is applied on a recent model for haemoglobin production in erythrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.