Abstract

Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G2 checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-D (null) mutant is defective in both S and G2 checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G2 checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1, and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G2 checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G2-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G2 arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.