Abstract
We explore the space of consistent three-particle couplings in ℤ2-symmetric two-dimensional QFTs using two first-principles approaches. Our first approach relies solely on unitarity, analyticity and crossing symmetry of the two-to-two scattering amplitudes and extends the techniques of [2] to a multi-amplitude setup. Our second approach is based on placing QFTs in AdS to get upper bounds on couplings with the numerical conformal bootstrap, and is a multi-correlator version of [1]. The space of allowed couplings that we carve out is rich in features, some of which we can link to amplitudes in integrable theories with a ℤ2 symmetry, e.g., the three-state Potts and tricritical Ising field theories. Along a specific line our maximal coupling agrees with that of a new exact S-matrix that corresponds to an elliptic deformation of the supersymmetric Sine-Gordon model which preserves unitarity and solves the Yang-Baxter equation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.