Abstract

This paper explores the numerical conformal bootstrap in general spacetime dimensions through the lens of a distinct category of analytic functionals, previously employed in two-dimensional studies. We extend the application of these functionals to a more comprehensive backdrop, demonstrating their adaptability and efficacy in general spacetime dimensions above two. The bootstrap is implemented using the outer approximation methodology, with computations conducted in double precision. The crux of our study lies in comparing the performance of this category of analytic functionals with conventional derivatives at crossing symmetric points. It is worth highlighting that in our study, we identified some novel kinks in the scalar channel during the maximization of the gap in two-dimensional conformal field theory. Our numerical analysis indicates that these analytic functionals offer a superior performance, thereby revealing a potential alternative paradigm in the application of conformal bootstrap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.