Abstract
Self-incompatibility (SI) is one of several mechanisms that have evolved to prevent inbreeding in plants. SI in Brassica is controlled by the polymorphic S locus complex. Two S locus-encoded proteins are coordinately expressed in the stigma epidermis: the cell wall-localized S locus glycoprotein (SLG) and the plasma membrane-anchored S receptor kinase (SRK). These proteins are thought to recognize a pollen factor that leads to the rejection of self-pollen. Evidence has accumulated that indicates that both proteins are necessary for the ability of the stigma to inhibit self-pollen. However, it has not been possible to prove this necessity definitively or to demonstrate that these genes are sufficient for this phenotype, because previous attempts to transfer this phenotype via transformation have not been successful. In this study, two overlapping S locus genomic clones, which cover approximately 55 kilobases of DNA and contain the SLG, SRK, and an anther-expressed gene in the region common to the two, were introduced into a self-compatible Brassica napus line. The resulting transgenic plants were shown to carry the female part of the SI phenotype, rejecting pollen in a haplotype-specific manner. However, the pollen SI phenotype was not found in any of the transgenic plants. These data show that the SLG and SRK are sufficient for the female side but not the male side of the SI phenotype in Brassica and that there must be an independent pollen S factor encoded outside the cloned region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.