Abstract

BackgroundMetastasis is the major cause of colorectal cancer (CRC) mortality. Emerging evidence suggests that long noncoding RNAs (lncRNAs) drive cancer metastasis and that their regulatory pathways could be targeted for preventing metastasis. However, the underlying mechanisms of lncRNAs in CRC metastasis remain poorly understood.MethodsMicroarray analysis was used to screen for differentially expressed lncRNAs. Transwell assays, fibronectin cell adhesion assays, and mouse metastasis models were utilized to evaluate the metastatic capacities of CRC in vitro and in vivo. Chromatin isolation by RNA purification, chromatin immunoprecipitation and chromosome conformation capture were applied to investigate the underlying mechanism involved. qRT‒PCR and transmission electron microscopy were performed to confirm macrophage polarization and the presence of cancer-derived exosomes.ResultsThe lncRNA RP11-417E7.1 was screened and identified as a novel metastasis-associated lncRNA that was correlated with a poor prognosis. RP11-417E7.1 enhances the metastatic capacity of CRC cells in vivo and in vitro. Mechanistically, RP11-417E7.1 binding with High mobility group A1 (HMGA1) promotes neighboring thrombospondin 2 (THBS2) transcription via chromatin loop formation between its promoter and enhancer, which activates the Wnt/β-catenin signaling pathway and facilitates CRC metastasis. Furthermore, exosomes derived from CRC cells transport THBS2 into macrophages, thereby inducing the M2 polarization of macrophages to sustain the prometastatic microenvironment. Notably, netropsin, a DNA-binding drug, suppresses chromatin loop formation mediated by RP11-417E7.1 at the THBS2 locus and significantly inhibits CRC metastasis in vitro and in vivo.ConclusionsThis study revealed the novel prometastatic function and mechanism of the lncRNA RP11-417E7.1, which provides a potential prognostic indicator and therapeutic target in CRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.