Abstract
We study the eigenvalues of the rotating Morse potential by using the quantization condition from the analytical transfer matrix (ATM) method. A hierarchy of supersymmetric partner potentials is obtained with Pekeris approximation, which can be used to calculate the energies of higher rotational states from the energies of lower states. The energies of rotational states of the hydrogen molecule are calculated by the ATM condition, and comparison of the results with those from the hypervirial perturbation method reveals that the accuracy of the approximate expression of Pekeris for the eigenvalues of the rotating Morse potential can be improved substantially in the framework of supersymmetric quantum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.