Abstract

The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and −K valleys, respectively, is proposed. It is found that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.