Abstract

In this study, the perturbation approach for predicting material’s forming limit strains under non-associated flow rule (non-AFR) is proposed. The influence of yield function and plastic potential function on the forming limit curve (FLC) evaluated by the perturbation approach are discussed through analyzing the normalized growth rate of a perturbation. In the framework of non-AFR, Hill’48 and Yld2000-2d are chosen for AA5754-O. The results show that the left side of FLCs predicted with the different forms of yield function and plastic potential nearly overlap. Hence, it is concluded that the yield function and plastic potential have a negligible influence on the forming limit strain under a negative strain path. However, the FLC under a positive strain path is principally dependent on the relationship between strain ratio β and stress ratio α, which can be determined by the plastic potential. Additionally, in comparison to the FLC under AFR, an increase in the forming limits strain is observed near the plain strain region, when the derivative of the normalized yield function concerning α is positive and vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.