Abstract

PDZ domains are versatile protein interaction modules with the ability to dimerize and to recognize internal and carboxy-terminal peptide motifs. Their function in mediating the formation of multi-molecular signaling complexes is best understood at neuronal and epithelial membranes. In a screen for interactors that regulate transcription factor function in pancreatic beta cells, we isolated two PDZ-containing proteins Bridge-1 (PSMD9) and PDZD2, which contain one and six PDZ domains, respectively. Here, we review their functions in the regulation of pancreatic beta cells as a nuclear coactivator or extracellular signaling molecule. Bridge-1 interacts with both E12 and PDX-1 to stimulate insulin promoter activity. Recent gain-of-function analysis in both cell and transgenic models has revealed its functions to regulate both insulin gene expression and pancreatic beta-cell survival. Little is known about the intracellular function of PDZD2 that is predominantly localized to the endoplasmic reticulum of INS-1E cells. Interestingly, PDZD2 is proteolytically processed by caspase-3 to generate a carboxy-terminal secreted protein (sPDZD2) containing two PDZ domains. Expressed in fetal pancreatic progenitor and INS-1E cells, sPDZD2 when added as recombinant protein exerts concentration-dependent mitogenic effects on beta-like cells. We propose that the PDZ domain proteins Bridge-1 and PDZD2 likely transduce signals that regulate insulin production, proliferation, and survival of pancreatic beta cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.